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A study of the absorption of electromagnetic waves in an electron-phonon system is described, for waves 
whose frequencies are high compared to the collision frequency and whose wavelengths are long compared 
to the Bohr (Debye) radius. The treatment rests on the introduction of the temperature-dependent Green's 
function and Kubo's formula for the conductivity. An exact expression for the conductivity, where collective 
effects are properly taken into account, is obtained, assuming the number of electrons in a Bohr (Debye) 
sphere is large compared with one. The application of this theory to degenerate semiconductors is suggested. 

I. INTRODUCTION 

TH E purpose of the following work is to calculate 
the absorption of high-frequency electromagnetic 

waves by an electron-phonon system. Such a system pro
vides one of the mechanisms of a realistic model for 
investigating infrared absorption by highly degenerate 
semiconductors as InSb, InP, GeP, etc. In these de
generate semiconductors, which are ionic to a small 
degree, the conducting electrons interact with the 
polarized vibrations of the lattice (optical phonons). 
The interaction between the electrons and the optical 
phonons is weaker here than in ionic crystals, which 
allows us to assume a weak coupling between the elec
trons and the optical phonons. An additional mechanism 
for the absorption of high-frequency electromagnetic 
waves is that due to randomly distributed frozen ions 
which was discussed by Ron and Tzoar1 for the case of 
degenerate semiconductors. In the following, we shall 
be interested only in the absorption due to the inter
action of electrons with optical phonons. 

This phenomenon is important in the frequency range 
co>cog, where co is the external field frequency and coq is 
the frequency spectrum of the optical phonons, as a 
function of its momentum q. Since the frequencies of 
interest are of the same order of magnitude as the plasma 
electron frequency, collective effects of the electron gas 
must be taken properly into account. Due to the inter
action of the electron with the crystal, their effective 
mass and charge is such that the number of electrons in 
a Bohr sphere is larger than one. Hence, the plasma 
approximation for the electron gas can be used (see, for 
example, the article of Wolff2). The present problem has 
been treated also by Gurevich, Lang, and Firsov.3 

However, they completely neglected collective effects 
which, as we point out, should be taken into account. 

Section I I deals with the well-known relation between 
the Kubo4 formula for the conductivity and the tempera-
ture-dependent Green's function. We employ the dia
gram technique of Luttinger and Ward6 to obtain our 

1 A. Ronand N. Tzoar, Phys. Rev, 131? 1943 (1963), 
2 P. A. Wolff, Phys. Rev. 126, 405 (1962). 
3V. L. Gurevich, I. G. Lang, and Yu-A. Firsov, Fiz. Tverd. 

Tela 4, 1252 (1962) [translation: Soviet Phys.—Solid State 4, 
918 (1963)]. 

4 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957). 
5 J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960). 
6 A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinsky, 

result for the absorption coefficient in Sec. I I I . We 
reserve Sec. IV for discussion and conclusions. 

II. EVALUATION OF THE ABSORPTION 
COEFFICIENT 

We start from the general expression of the conduc
tivity for a system of charged particles as given by 
Kubo4 for wave number equal to zero (fi is taken to be 
one): 

er(a>) = 
W 

dre^ <*X<j(r-*'X).j(0)>, (1) 

where ca is the frequency of the electromagnetic wave, 

j (r) = 7%HT\ j(0)« (2) 

is the Fourier transform of the current operator in the 
Heisenberg representation for wave number zero, and 
the average of an operator 0 is given by 

<0> = T r { ^ ( ° + ^ - ^ 0 } . (3) 

In Eqs. (2) and (3), H represents the total Hamiltonian 
of the system, U is defined by 

1=Tr{^ ,(3(»N~H) (4) 

fi and N are the chemical potential and the number 
operator for the electrons, respectively, and (3 the in
verse of the temperature in energy units. The current 
operator used in Eq. (2) is defined by 

j(0) = —Epflp^P* (5) 
m 

where we use the following convention for Fourier 
transforms: 

*(*,r)= 

and 

do)— ̂  exp (—icoT-• & . x ) f ( M 

f(k,w)= I dr j dfxexp(sW+ik»x)f(XjT), (6) 

Zh. Eksperim. i Teor. Fiz. 36, 
Phys.-JETP 9, 636 (1959)]. 

900 (1959) [translation: Soviet 
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In order to render Eq. (1) in a more convenient form, 
we integrate it by parts and obtain 

o-(co) = o-o(co)+0'i(a>), (7) 
where 

<ro (w) = io?p
2/4xco. (8) 

Here o)p== (4:we2n/ni)112 is the plasma frequency, TI, e, 
and m are, respectively, the electron density, charge, 
and mass, and 

*i(«) = [ dr e*°'([i (r) • ,j (0)]) , (9) 

where [ , ] denotes the commutator. 
We next define a Green's function 

1 
M(u)=— <r{j(«H(o)}>, t N 

37 (10) 

-I3<u<p 

where Z1 is the Dyson ordering operator and 

](u) = euHj(0)e~uH. (11) 
The function M(u), defined in Eq. (10) is periodic in u, 
i.e., 

M(u+p) = M(u), 

and, thus, its Fourier transform, with respect to u is 

Af(w„)= / due**uM(u), (12) 
./o 

where 
G)n=2irin/p, w=0, ± 1 , ± 2 , • • •. (13) 

We now define i f (2) as the analytical continuation of 
M(ctin) from the infinite set of points lirin/fi (n>0) on 
the positive imaginary axis of z to the entire upper 
half-plane of z. I t is then easy to show7,8 that o-i(co) 
= {\/io))M(co+ie) for e—>0+. We therefore obtain 

0.(0,) = (r0(co)+ (l/iu)M(a)+ie); € -> 0+ (14) 

as our useful expression for the absorption coefficient. 

III. EVALUATION OF THE ABSORPTION 
COEFFICIENT 

We turn now to the calculation of M((an) using a 
perturbation expansion technique, and then resumming 
all diagrams (terms) which contribute to the conduc
tivity for quantum (classical) plasmas, under the condi
tion that the number of particles in the Bohr (Debye) 
sphere is large, the frequency is high compared to the 
collision frequency, and the wavelength of the incident 
field is taken to be infinite. Thus in resumming the dia-

7 A. I. Larkin, Zh. Eksperim. i Teor. Fiz. 37, 264 (1959) [trans
lation: Soviet Phys.—JETP 10, 186 (I960)]. 

8 A. Ron and N. Tzoar, Phys. Rev. 131, 12 (1963). 

grams (terms) of the perturbation expansion, we con
sider processes proportional to the number of the elec
trons, N, as finite, and include them to all orders; 
while those processes which are not proportional to N 
are treated as small. This point has been discussed in 
detail by Balescu.9 

Our electron-phonon system is described by the 
Hamiltonian: 

H^HO+HT, (15) 
where 

# o = Z epap
+ap+]L o)qb^bq (16) 

and 

1 Awe2 

HT=-— X ) ap+Jar>>„-,q
1ar>>ar) 

2FpP 'q k2 

1 
+ — ~ £ (Cflap+q+apftq+H.c.). (17) 

F l / 2 qp 

Here ooq is^the phonon frequency spectrum as a function 
of its^momentum q, Cq is the coupling between an 
electron and a phonon of momentum q, and ep is the 
kineticfenergy of the electron having momentum p. 
Here aj, ap and 5q

f, Z>q are, respectively, the creation 
and destruction operators for electrons and phonons, 
which obey the usual commutation relations. 

The basic rules for the perturbation expansion of 
M(can) and their diagrammatical representation are 
given essentially by Luttinger and Ward,5 with the 
addition that here we also have an electron-electron 
interaction via a phonon. The essential ingredients of 
the perturbation expansion are the free electron propa
gator given by 

G p ( f 0 = ( f i - € P ) - 1 , 

ti= ( 2 / + 1 ) 7 T ; / / 3 + M ; / = 0 , ± 1 , =fc2, • • • (18) 

ep=p2/2m, 

and indicated diagrammatically by a solid line; and the 
Coulomb and phonon interaction lines, respectively, 
given by dotted and dash-dotted lines. We represent a 
Coulomb interaction by means of its matrix element 
4twe2/k2 and a phonon interaction by means of the pro
duct \Ck\2Dk(oim), where k and am are the momentum 
and " complex energy" transferred by the interaction, 
and Dk(am) is the free phonon propagator given by 

. D f c ( a w ) - 2 c o , / ( a m
2 - c o , 2 ) . (19) 

The coupling term, \Ck\
2—2'jre2k~26(r1a)iO)t~'2(ui2—co*2), 

between two electrons via a phonon is considered to be, 
for degenerate semiconductors, of the order of e2, and 
of long range because of the k~2 term. Here cot, cof, 
respectively, represent the frequencies of the longitudi-

9 R. Balescu, Phys. Fluids 4, 95 (1960). Many references con
cerning quantum and classical plasmas can be found here. 
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where 

FIG. 1. The class 
of diagrams which 
contribute to the 
high-frequency con
ductivity. 

nal and transverse optical vibrations and eo represents 
the lattice static dielectric constant. (See Ref. 3.) 

In order to determine the diagrams (terms) which 
contribute to the absorption coefficient at frequencies 
high compared to the collision frequency and wave
lengths long compared to the Bohr (Debye) radius, we 
must recognize the three parameters of the system; the 
number of particles in the Bohr (Debye) sphere, the 
strength of the electron-phonon coupling and the num
ber of excited phonons which is merely a measure of 
the crystal temperature. 

For the practical case of degenerate semiconductor at 
low temperature one may assume a weak electron-
phonon coupling and small number of excited phonons. 

However, for the sake of generalization, we first 
solve the symmetric problem in which the dielectric 
function of the medium is affected by the presence of 
the phonons. Furthermore, we assume that the number 
of particles in the Bohr (Debye) sphere is much larger 
than one and thus plasma effects are dominant. This 
results in strong shielding of the Coulomb potential 
as well as the phonons via the effective field of the 
medium. We therefore find that the Green's function 
Ms(Gon) for this problem is approximated by the diagram 
given in Fig. 1. However, at low temperature and weak 
electron-phonon coupling (i.e., the case of degenerate 
semiconductor) our Green's function M(a)n) should have 
only one-phonon interaction and, thus, is given by the 
first-order term in the expansion of Ms(un) in the phonon 
propagator. 

In Fig. 1 the wavy line represents the effective poten
tial shown in Fig. 2 and given by 

Uq(am) = Bq(am)[l—Bq(am)Qq(am)~] 

~Bq{am)tPq(am)-]-\ 
(20) 

and 

&(«») = — / dp , (21) 

(27r)3 J tp+q/2— €p-q/2 — (Xm 

am = 2wiin/P, m=0, ± 1 , ± 2 , • • • , 

/ ^ [ e ^ i H f c + 1 ] - 1 . (22) 

Bq(am) = 4 T T ^ 2 + I Cq | *Dg(am) . (23) 

We now calculate Ms (o)n) for our symmetrical model 
by summing all the diagrams given in Fig. 1 and obtain 

MsM = E ( p - p ' ) E * W ( 0 ( a > » ) , (24) 

where Kpp^fan) corresponds to the ith diagram of Fig. 2. 

1 1 ^ 1 
Kpp'Mfard^ E Up^v>{am)-H Gp(£i)Gp(ti+a)n) 

V fi m 0 I 

XGp-{^i+o}n~\-am)Gpf(Si+am), 

1 1 

*PP ' (2 )(o>»)=W-E UM-Z LGP(Xi)J 
V m R I 

XGp^q(£i — am)Gp(£i~-u)n) , 

1 1 1 
KpP^M^5Pp,-~Z-Z Uq(amyZLGp(^)J 

V Q (} « P I 

XGp+g({i+am)Gp({i+Q>n), 

1 1 
i£WC4)(o>n) = — E - E Uq(am)Uq(am-ccn) 

V2 Q p m 

(25) 

FIG. 2. The integral equation for the effective interaction. 

X - E Gp(£i)Gv{$j-aOG^G"l~-am) 

X - E Gp'($ir)GV'(U—o)n)Gp>-q(ti--am), 

1 1 
KpV>(5) (p>n) = — E ~ E Uq (am) Uq (oim+o)n) 

V2 Q P m 

1 
X - E Gp(£i)Gp(ti—a)n)Gp-.g(£i—am) 

X~ E Gp>(£i>)Gp>(£i'+a)n)Gp>+q(£i>+am). 
P v 

We now carry out the summation over / and /' by 
converting the sums into integrals (see Ref. 5). After 
considerable manipulation and using the symmetry 
properties under the transformation am—> — am—co«, 
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we obtain for Ms(oon) where 

1 r dq 
w») = I ; 

3o)n
2 J (2TT 

Ms(0>n) = 
dq e2 1 

-E|c« 
8q(am)=l Qq(am) (31) 

(2TT)3 W 2 / 5 m 

XDq(am)[Qq(am+o)n) — Qq(am)'] 
is the electron dielectric function. 

We now evaluate the sum over m in the expression 
X[_Pq{am)Pq{am+un)~]-K (26) f ° r ^ W by employing the same technique as in Eq. 

(26). We obtain the absorption coefficient for the low-
Equation (26) is not suitable for the analytical con- temperature case as 

tinuation to the upper z half plane. In order to perform 
the continuation we first have to evaluate the summa
tion over m. We use essentially a method developed by 
PereP and Eliashberg10 [see also Appendix B of Ref. 8] 
to carry out this summation. We obtain the absorption 
coefficient which results from the contribution of the 
diagrams in Fig. 1: 

as(a)) = cro(cx>)Jri dqq2\Cq\
2 / dx 

3CO3W2(2TT)3 J AwiJ^ 

X c o t h ( l ^ ) -
1 1 

Pq
+(x+»)[P+(x) 

XZQq^(x~c,)-QqHx)XDq
+(x+^-~D+(x)2 

——ce*+(*+«)-er(*)] 

X [ £ * + ( * + « ) - Z V " ( * ) ] , (27) 

where P stands for the principal values of the integral. 
In Eq. (25) 

QqHx) = 

Dq±(x)=-

1 
dp-

Jp+Q/2~-fp~q/2 

(2x)3 J ep+q/2— tp-qii—xT-ie 

2ook 

(28) 

and 

P*H*) 

(x±.ie)2—cok
2 

Ave2 

- [ \Cq\*D±(x) \QqHx). (29) 

The first order term of Ms(o)n) expanded in a power 
series in the phonon interaction is a suitable approxi
mation for the Green's function in the high-frequency 
and low-temperature case. I t is given by 

M((Cn) = 
1 dq 1 

•Z\cq 
3a>n

2J (2TT)3 m2$ 

XDq(am)[_Qq(am+u) — Qq(am)'] 

cr(o>) = cr0(co)+i- dqq2\Cq\
2— f 

3^m2 (27ry J 4m JL 

.-j-oo 

dx 

1 1 
Xcoth(i(3x)' 

8q(x+a>)[8q(x) 

XLQq+(x+u)-Q+(x)XD+(x+a>)-D+(x)2 

1 

S*(x) 
LQq

+(x+co)-~Qq~(xY] 

XtD+(x+a>)~Dq-(x)-]\y (32) 

where 

4TT62 

«,(*) = ! - Q+(x). (33) 

Equation (32) can be simplified if we express the 
Q's in terms of the 8'$, and we obtain 

cr = (To (co)-i-
4?r r00 P 

/ dqq*\Cq\
2— 

3co%2(2x)370 4iri 
,+00 

X / rfzcoth (§#»){ 
r 1 

r+co)J <r „ , 
XZD+(X+G>)-D+(X)-]+\ 1 

LS*(x) S(x+<a)J 

XlD+(x+a)-Dq'(x)2 

4TT r00 P 
= e r 0 ( « ) - * / dqq*\Cq\

2 

3co3w2(27r)3;0 4W 

f+0° f 1 
X / dx coth( | /5x) Dq+(x+<a)2i I m -

1 

8q(x+o)) 
•2i ImDq

+ (x) — 2i Im 

8q(x) 

•D+(x)-

• 8q(x) . 
(34) 

r / ) / v p , , .., x , . I n Eq. (34), 8q(x) is defined by Eq. (33) for a degenerate 
x L6s(PW &q{am-ro)n) J , ^ u ; electron gas. However, for a nondegenerate electron gas 

io V. I. Perel' and G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. (classical limit), <r(co) is still given by Eq. (34) with the 
41,886 (1961) [translation: Soviet Phys.—JETP 14, 633 (1962)], understanding that 8q(x) is the classical limit of Eq. 
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(33) and is given by 

Sq(x) = l- du'--
u'—x—ie du' 

- / ( * ' ) , (35) 

where f(u) is the one-dimensional Maxwell-Boltzman 
distribution. 

Since the last term in Eq. (34) is purely imaginary 
and does not contribute to the absorption, our final 
result for the resistivity i?(co) = real part of l/<r(co) is 

R(<*)'-
16 r P f+0° 

/ dq<f\Cq\*— I dxcothXiPx) 
3d) ~%2C0 J o 47T J -oo 

X ImDg
+(x+c<;) Im~ 

-Im-
Sg(x + 0)) 

hi*) 

•ImD+(x) (36) 

Our result for R(cc) is complicated and cannot be 
evaluated analytically. Moreover, in order to evaluate 
the integral in Eq. (36) we must know the energy spec
trum of the phonons as a function of their momentum. 
We hope to submit a computation of Eq. (36) for real 
semiconductors in a future communication. 

IV. DISCUSSION 

in this paper we have derived a general expression 
for the absorption coefficient of electromagnetic waves 
by a plasma-phonon system. We have restricted our
selves to applied fields of high frequency and long wave
length and we have properly accounted for collective 
effects. Our approximation rests on the fact that the 
phonons are weakly coupled to the electrons and our 
results are given in Eq. (32) for the case where the popu
lation of the phonons is smaller than that of the elec
trons, and by Eq. (27) for the more general case, i.e., 
the number of the phonons is comparable to that of the 
electrons. 

We now compare our result for the high frequency 
conductivity with that given in Ref. 3. The proper in
clusion of the collective effects gives rise in the right-hand 
side of our Eq. (32), to the factors [mSq(x+a))8q(x)']~1 

or [_8q(x
Jru>)&*(x)~]~1 which do not appear in the result 

given in Ref. 3 [their Eq. (A 16)]. These factors modify 
the expression for the absorption coefficient to represent 
the screening effect due to the self-consistent field. 
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